Geometry of some moduli of bundles over a very general sextic surface for small second Chern classes and Mestrano-Simpson conjecture

نویسندگان

چکیده

Let $S \subset \mathbb P^3$ be a very general sextic surface over complex numbers. $\mathcal{M}(H, c_2)$ the moduli space of rank $2$ stable bundles on $S$ with fixed first Chern class $H$ and second $c_2$. In this article we study configuration points certain reduced zero dimensional subschemes satisfying Cayley-Bacharach property, which leads to existence non-trivial sections memeber for small Using will make an attempt prove Mestrano-Simpson conjecture number irreducible components 11)$ partially. We also show that is $c_2 \le 10$ .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vanishing of Chern Classes of the De Rham Bundles for Some Families of Moduli Spaces

Given a family of nonsingular complex projective surfaces, there is a corresponding family of Hilbert schemes of zero dimensional subschemes. We prove that the Chern classes, with values in the rational Chow groups, of the de Rham bundles for such a family of Hilbert schemes vanish. A similar result is proved for any relative moduli space of rank one sheaves over any family of complex projectiv...

متن کامل

Moduli Spaces of Vector Bundles over a Klein Surface

A compact topological surface S, possibly non-orientable and with non-empty boundary, always admits a Klein surface structure (an atlas whose transition maps are dianalytic). Its complex cover is, by definition, a compact Riemann surface M endowed with an anti-holomorphic involution which determines topologically the original surface S. In this paper, we compare dianalytic vector bundles over S...

متن کامل

Chern classes of automorphic vector bundles

1.1. Suppose X is a compact n-dimensional complex manifold. Each partition I = {i1, i2, . . . , ir} of n corresponds to a Chern number c (X) = ǫ(c1(X)∪c2(X)∪. . .∪cr(X)∩[X]) ∈ Z where c(X) ∈ H(X;Z) are the Chern classes of the tangent bundle, [X] ∈ H2n(X;Z) is the fundamental class, and ǫ : H0(X;Z) → Z is the augmentation. Many invariants of X (such as its complex cobordism class) may be expres...

متن کامل

Chern Classes of Bundles on Rational Surfaces

Consider the blow up π : X̃ → X of a rational surface X at a point. Let Ṽ be a holomorphic bundle over X̃ whose restriction to the exceptional divisor isO(j)⊕O(−j) and define V = (π∗Ṽ ) . Friedman and Morgan gave the following bounds for the second Chern classes j ≤ c2(Ṽ )− c2(V ) ≤ j 2. We show that these bounds are sharp.

متن کامل

The Chern Classes of the Verlinde Bundles

A formula for the first Chern class of the Verlinde bundle over the moduli space of smooth genus g curves is given. A finite-dimensional argument is presented in rank 2 using geometric symmetries obtained from strange duality, relative Serre duality, and Wirtinger duality together with the projective flatness of the Hitchin connection. A derivation using conformal-block methods is presented in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin Des Sciences Mathematiques

سال: 2022

ISSN: ['0007-4497', '1952-4773']

DOI: https://doi.org/10.1016/j.bulsci.2022.103181